
Improving Movement Prediction of Traffic
Actors using Off-road Loss and Bias Mitigation

Matthew Niedoba, Henggang Cui, Kevin Luo,
Darshan Hegde, Fang-Chieh Chou, Nemanja Djuric

Uber Advanced Technologies Group
{mniedoba, hcui2, kevin.luo, darshan.hegde, fchou, ndjuric}@uber.com

Abstract

There is a significant amount of recent literature in the domain of self-driving
vehicles (SDVs), with researchers focusing on various components of the SDV
system that have the potential to improve on-street performance. This includes work
exploring improved perception of the SDV surroundings, or proposing algorithms
providing better short-term prediction of nearby traffic actor behavior. However,
in most cases, the authors report only aggregate metrics computed on the entire
data, and often do not fully consider the bias inherent in the traffic data sets. We
argue that this practice may not give a full picture of the actual performance of the
prediction model, and in fact, may mask some of its problem areas (e.g., handling
turns). We analyze the amount of bias present in traffic data and explore the ways
to address this issue. In particular, we propose to use a novel off-road loss and
standard bias mitigation techniques that result in improved performance. We further
propose to avoid aggregate metrics and instead analyze performance on relevant
subsets of the data, thus better capturing actual model capabilities. Moreover,
we propose to measure a novel off-road error to complement commonly used
prediction metrics. Extensive analysis of real-world data suggests benefits of the
proposed approach for improving the performance of SDV technology.

1 Introduction

We are witnessing an unprecedented interest in the self-driving technology, with a large number
of industry and academic researchers turning their attention towards this challenging task. This
is evidenced by a substantial amount of recently published work at the top machine learning and
robotics conferences on various areas of the problem, ranging from improvements to the perception
systems used to understand the state of the world surrounding the self-driving vehicle (SDV) [26, 37],
over new prediction methods that infer a short-term future of relevant traffic actors [5, 13], to motion
planning approaches that help plan and optimize the SDV’s path in this complex environment [8, 15].
Moreover, recent workshops focusing on the problem of SDVs at venues such as CVPR, ICRA, and
NeurIPS further reflects significant interest and progress made in the field of autonomous driving
[31], only expected to increase in the near future [18].

In this work, we focus on the problem of predicting the movement of traffic actors found in the SDV’s
surroundings [32], a critical part of autonomous technology. In particular, once the SDV manages to
successfully detect and track nearby traffic actors, it also needs to understand how they will move
in the short-term in order for both actors and the SDV to be safe during operation [13]. This is a
very complex problem, as the inference model needs to take into account various inputs coming
from the detection system, as well as other sources such as a 3-D map of the operating area [24] and
interactions between the actors and the environment [33]. Researchers have proposed a number of
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methods to tackle this issue, ranging from tracking-based methods [40], methods using imitation or
reinforcement learning [4], and end-to-end approaches [5, 27], to name a few.

While existing studies include extensive experiments showing the benefits of the proposed approaches,
we argue that the presented offline evaluations may not provide the full picture, as researchers often
consider only aggregate metrics and report performance results of their models on all available data.
This practice may be suboptimal, as the traffic data is known to be highly imbalanced with majority
of traffic actors simply driving straight [28]. As a consequence, aggregate metrics are dominated by
the most frequent maneuvers, where the prediction models often perform well and are potentially
not an ideal proxy for measuring on-road SDV performance. For example, left- and right-turning
maneuvers in intersections could be of greater interest to practitioners, where accurate predictions are
even more relevant for safe operations of the SDV.

To account for this issue we consider the recently introduced state-of-the-art RasterNet method [13],
and experiment with traditional methods to reduce the effect of data imbalance using upweighting of
under-represented categories. In addition, we introduce a novel off-road loss, that results in further
performance gain over the baseline. We also propose to measure and report a novel off-road error to
better capture model performance, in addition to commonly reported displacement, along-track, and
cross-track error metrics. Lastly, we show that prediction metrics sliced by the maneuver mode paints
a more detailed picture of the model performance, as opposed to only reporting aggregate metrics.
The contributions of our work are summarized below:

• We discuss the problem of data imbalance in existing traffic data sets;
• We argue that reporting metrics sliced by maneuvers is critical for fully understanding the

performance of prediction models;
• We propose to report a novel off-road error to complement commonly used prediction

performance metrics used in the literature;
• We experiment with bias mitigation techniques and a novel off-road loss in the context of

the state-of-the-art RasterNet method, and show improved aggregate and sliced metrics.

2 Related work

2.1 Deep learning for autonomous driving and data imbalance

Motion trajectory prediction of other traffic actors on the road is a critical component in many
autonomous driving systems [4, 10, 40], as the SDV needs accurate trajectory predictions to safely
plan the path through the dynamic traffic environment. The current state-of-the-art prediction
work heavily depends on deep neural networks and large traffic data sets. For example, authors in
[20, 22, 23, 25] used recurrent neural networks (RNNs) with Long Short-Term Memory (LSTM)
or gated recurrent unit (GRU) to predict actors’ future trajectories from past observed positions.
Some researchers proposed to add additional scene context into their prediction models by rasterizing
the map and actor’s surroundings in a bird’s-eye view (BEV) image and providing it as an input to
convolutional neural networks (CNNs) [4, 9, 11, 13]. To explicitly model interactions between the
traffic actors, authors of [2, 17, 29, 33, 38] modeled movement of all actors in the scene using social
layers. Recent work by [17, 22, 29, 39] used GAN models to model the uncertainty and multimodality
of actor’s future motion. In [11] the authors tackled the multimodal prediction problem by having the
model predict for each actor a small fixed number of trajectories along with their probabilities, and
learning them jointly with a specially designed loss function.

Deep models require large amount of traffic data to train. However, recent work in traffic domain has
shown that collecting data in real-world scenarios creates a natural data imbalance due to the long
tail of driving behavior [3, 12, 36], which may impact the model performance in under-represented
situations. The authors of [5] obtained a data set which was labelled according to 8 different high-level
actions, and observed that actions like driving straight make up a vast majority of the trajectories.
Several other works [11, 14, 28] noted similar imbalance between various vehicle maneuvers.

Countering the trajectory imbalance in self-driving has generally taken the form of downsampling
majority classes [5] or weighting the loss differently on a per-example basis [36]. These schemes
often rely on human-annotated scenario labels and are thus not scalable to varied scenario categories,
granular categorization, and larger data sets.
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2.2 Mitigations for unrealistic off-road trajectory predictions

Recently proposed ChauffeurNet [4] used an on-road loss to encourage the predictions to stay inside
the road space, however our work differs from this method in several aspects. First, ChauffeurNet’s
on-road loss requires the trajectories to be predicted in the form of occupancy heatmaps. However,
predicting such occupancy heatmaps is computational expensive, and most of the state-of-the-art
trajectory prediction works (e.g., [6, 11, 29, 39]) do not predict occupancy heatmaps. Instead,
common approach is to predict x- and y-coordinates of trajectory points, making the ChauffeurNet’s
on-road loss not directly applicable. The off-road loss proposed in this work, on the other hand, works
on trajectory point coordinates and can be easily applied to the models discussed above. Second,
ChauffeurNet treats the entire road surface as the drivable region (i.e., their ground-truth target road
mask). However, as recent work [19] pointed out, the road surface alone does not solely describe
an area where a vehicle can drive, and areas such as lanes in the opposite direction should also be
marked as non-drivable. We also observe that incorrectly predicting an actor to unrealistically drive
into an opposite-direction lane can cause even bigger problems for the SDV (e.g., causing the SDV
to perform dangerous evasion maneuvers) than predicting actors to drive outside the road. In this
work, we leverage the lane connectivity graph in the map to identify a list of lanes that each actor can
realistically drive on, and include only these lanes in our drivable region set.

3 Methodology

In this section we first introduce the baseline RasterNet [9, 13], a recently proposed state-of-the-
art approach for short-term prediction of actor movement. Then, we discuss potential concerns
originating from biased data sets used for training, and propose approaches to mitigate these issues.
It is important to emphasize that while we use RasterNet as a proof-of-concept in this work, the
experiments and conclusions regarding mitigation of bias and off-road predictions are far more
general, as we observed similar problems with other prediction approaches as well.

3.1 Description of the RasterNet model

The method assumes there exists a tracking system onboard a SDV, ingesting sensor data and allowing
detection and tracking of traffic actors in real-time (e.g., using KF taking lidar, radar, and/or camera
data as inputs). State estimate contains information describing an actor at fixed time intervals,
including bounding box, position, velocity, acceleration, heading, and turning rate. Moreover, we
also assume access to detailed map data of an operating area of the SDV, comprising road locations,
lane and crosswalk boundaries, and other relevant map info. The resulting tracking and map data is
then used as an input to the considered deep system.

We denote overall map data byM, and a set of discrete times at which tracker outputs state estimates
as T = {t1, t2, . . . , tT }, where time gap ∆t between consecutive time steps is constant (e.g.,
∆t = 0.1s for tracker running at frequency of 10Hz). State output of a tracker for the i-th actor
at time tj is denoted as sij , where i = 1, . . . , Nj with Nj being a number of tracked actors at
time tj . Note that in general the actor counts vary for different time steps as new actors appear in
and old disappear from the sensor range. Then, given data M and all actors’ state estimates up
to and including tj (denoted by Sj), the task is to predict sequence of future states (or trajectory)
τ ij = [si(j+1), . . . , si(j+H)], where si(j+h) denotes state of the i-th actor at time tj+h, and H
denotes the number of future consecutive time steps for which we predict states (or prediction
horizon). Past and future states are represented in an actor-centric coordinate system derived from
actor’s state at time tj , where forward direction defines x-axis, left-hand direction defines y-axis, and
actor’s bounding box center defines the origin. We denote heading of an i-th actor at time tj+h as
φi(j+h), computed as an angle relative to the x-axis (i.e., forward direction at time tj).

Let us assume a predictive model with parameter set θ, taking mapM and state info Sj as inputs
at time tj , and outputting . The inputs are encoded as an overhead raster to represent surrounding
context for the i-th actor (see Figure 2a for an example), used to predict trajectory of length H . We
denote model outputs using the hat notation •̂, and for simplicity do not explicitly specify (θ,M,Sj)
as input arguments. Then, we write overall loss for the i-th actor at time tj as the Euclidean distance
between predicted and observed positions,

Lij =
√

(xi(j+h) − x̂i(j+h))2 + (yi(j+h) − ŷi(j+h))2. (1)

3



Figure 1: Maneuver frequency computed across three trajectory prediction data sets

As described in [11], this formulation can be extended to multimodal predictions. In particular,
instead of predicting one trajectory, the model outputs M modes and their associated probability
pijm modeled by a soft-max, with m ∈ {1, . . . ,M}. At each step during training we find a predicted
mode closest to the ground-truth trajectory, indexed by m∗. Then, the final loss is defined as

Lij =

M∑
m=1

Im=m∗(Lijm − α log pijm), (2)

where Ic is a binary indicator function equal to 1 if the condition c is true and 0 otherwise, Lijm is
computed as (1) taking only the m-th mode into account, and α is a hyper-parameter used to trade-off
between the two losses (i.e., a log-likelihood of the observed data given a winning mode on one side,
and a mode selection cross-entropy loss on the other). Note that, according to (2), during training we
update the position outputs only for the winning mode and the probability outputs for all modes.

We can optimize equation (2) over all actors and all times that are available in the training data to
learn the optimal model parameters,

θ∗ = arg min
θ

L = arg min
θ

T∑
j=1

Nj∑
i=1

Lij . (3)

3.2 Exploring and mitigating bias in traffic data

In this section we present our analysis of several available traffic data sets, showing that the issue of
bias is commonly encountered in practice. In particular, we analyzed the proprietary data used in the
RasterNet paper [13], along with two trajectory prediction data sets recently made publicly available,
the Argoverse motion forecasting data [7] and the ApolloScape trajectory data [35]. To categorize
the actor trajectories into different maneuvers, we introduce several heuristic filters. For the purposes
of this paper we consider straight, left turn, right turn, and sharp turn trajectories classes, where we
define class filters by consider actor heading along the trajectory points.

Assume we are taking trajectory τ ij of length H as an input. Then, the class filters are defined by
considering headings of trajectory points as defined below,

• going-straight trajectory filter:

Istr(τ ij) =

{
1, if |φi(j+H) − φij | ≤ threshstr,
0, otherwise.

(4)

• left-turning trajectory filter:

Ileft(τ ij) =

{
1, if threshstr < φi(j+H) − φij ≤ threshturn,
0, otherwise.

(5)

• right-turning trajectory filter:

Iright(τ ij) =

{
1, if threshstr < φij − φi(j+H) ≤ threshturn,
0, otherwise.

(6)

4



Figure 2: Visualization of the drivable region for a given actor: (a) RasterNet input; (b) drivable
region highlighted in the raster image; (c) representation of the nearest drivable point, each pixel in
the black region is associated with a white drivable point, where vectors indicate the direction and
scaled distance to the nearest drivable point

• sharp-turn trajectory filter:

Iuturn(τ ij) =

{
1, if |φi(j+H) − φij | > threshturn,

0, otherwise.
(7)

We categorized the trajectories from the considered data sets using the filters defined in such a
way, with the resulting data distribution shown in Figure 1 (we set the threshold parameters to
threshstr = 20◦ and threshturn = 135◦). We can see that in all three data sets more than two-
thirds of trajectories belong to the straight class, with left-, right-, and sharp-turns occurring at
significantly lower rates. It is clear that such bias is inherent to the traffic data found across the
autonomous industry, where most of the time we observe common, straight trajectories, with much
smaller fraction of the data representing more interesting, rare maneuvers.

As we show in Section 4, this inherent bias found in traffic data leads to the models performing
substantially worse on the under-represented classes, which may have negative impact on SDV’s
on-street performance. To mitigate this issue we considered common strategies when dealing with
imbalanced data sets, such as upweighting of rare classes obtained using the above filters. The results
will be shown and discussed in the experimental section. Going beyond these approaches, in the next
section we introduce a method that further improves performance of the prediction models when it
comes to predicting under-represented traffic situations.

3.3 Penalizing off-road trajectories

When examining failure modes of trajectory predictions of a model trained using loss (3), we observed
that large displacement errors often correspond to trajectories predicted to leave the region of the road
that would be deemed safe to drive by a human driver. Common failures see actors encroaching into
the oncoming traffic, driving onto the sidewalk, or exhibiting poor lane-following behavior. These
are illustrated in Figure 3 in the experimental section, where we can see that the model may output
suboptimal prediction in under-represented cases such as roundabouts or intersection types not seen
in the training data. This behavior is especially noticeable in turning trajectories, where the model
performs significantly worse than in other case. To address this issue, we propose two additional
losses to (3) which penalize predicting driving that leaves the drivable regions.

As discussed previously, we assume we have access to detailed map dataM. To introduce the new
losses, we are interested in the map data containing a directed graph that represents the lane structure
of the roadway, as well as polygons that represent the physical extent of each lane. Given this data,
for the i-th actor at time tj , we generate a set of n 2-D lane polygons Πij = {p1, p2, ..., pn} which
represent the BEV representation of the lanes which are reachable by traversing the directed lane
graph from the actor’s current position.

Given the drivable polygons, we generate a rasterized image representing the drivable surface formed
from the union of polygons in Πij where each drivable pixel has a value of 1 and each non-drivable
pixel has a value of 0 (see Figures 2a and 2b). Using this information, we generate an additional two
channel raster image in which the value of each pixel corresponds to the coordinates of the nearest
pixel which lies inside the drivable region (as illustrated in Figure 2c). We refer to the channels of
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this raster image storing x- and y-coordinates of the nearest on-road point as u(x, y) and v(x, y),
respectively. Given a predicted trajectory of length H , we introduce an additional off-road loss term,

Loffroad1
ij =

λ

H

H∑
h=1

√(
x̂i(j+h) − u(x̂i(j+h), ŷi(j+h))

)2
+
(
ŷi(j+h) − v(x̂i(j+h), ŷi(j+h))

)2
, (8)

defined as the mean Euclidian distance between each predicted waypoint and its nearest drivable
point as given by u and v, where λ is a hyper-parameter which controls the importance given to this
off-road loss term.

In addition to the off-road loss approach (8), we also propose an upweighting scheme to reduce
number of trajectories which deviate from the drivable region. Given u and v described previously, we
penalize off-road false positives (i.e., trajectories predicted to go off-road for which the corresponding
ground-truth waypoints remained inside the drivable region) as follows,

Loffroad2
ij =

H∑
h=1

α(x̂i(j+h), ŷi(j+h))
√

(x̂i(j+h) − xi(j+h))2 + (ŷi(j+h) − yi(j+h))2. (9)

The upweighting is applied on a per-waypoint basis on the displacement error between the predicted
and ground-truth waypoints, where α is a function which determines which waypoints to upweight

α(x, y) =

{
β if x 6= u(x, y) or y 6= v(x, y),

0 otherwise,
(10)

where β is the upweighting factor controlling how much to upweight off-road false positive waypoints.
Both losses (8) and (9) can be added directly to the loss (3) in order to enforce a higher penalty for
off-road trajectory errors.

4 Experiments

4.1 Experimental setting

We collected 240 hours of data by manually driving SDVs in various traffic conditions (e.g., varying
times of day, days of the week). The data contains significantly different number of examples for
various actor types, namely 7.8 million vehicles, 2.4 million pedestrians, and 520 thousand bicyclists.
Traffic actors were tracked using Unscented Kalman filter (UKF) [34], taking raw sensor data from
the camera, lidar, and radar, and outputting state estimates for each object at 10Hz. The filter is
a default tracker on our fleet, trained on a large amount of labeled data, and tested on millions on
miles (unfortunately, no other details can be given due to confidentiality concerns). We considered
prediction horizon of 6s (i.e., H = 60) for vehicle actors, and used the same default rasterization
scheme from [13] (with pixel size of 0.2m). We implemented models in TensorFlow [1] and trained
on 16 Nvidia Titan X GPU cards. We used open-source distributed framework Horovod [30] for
training, completing in around 24 hours. We used a per-GPU batch size of 64 and Adam optimizer
[21], setting initial learning rate to 10−4 further decreased by a factor of 0.9 every 20,000 iterations.
Models were trained end-to-end from scratch.

4.2 Metrics

Trajectory prediction performance is commonly evaluated using mean displacement error (MDE) and
final displacement error (FDE), which we also consider in our experiments. In particular, we report
`2 error at 3s (roughly corresponding to MDE) and at the final horizon of 6s (corresponding to FDE).
We also report along-track (AT) and cross-track (CT) metrics [16], relevant for quantifying prediction
system in the context of autonomous driving.

However, additional metrics are needed in order to quantify the frequency and magnitude of pre-
dictions which deviate from drivable regions. The reason is that these commonly used metrics fail
to capture the importance of the environmental context when assessing the quality of trajectory
predictions. To remedy this, we propose a novel metric to evaluate model performance by considering
the predicted and ground-truth trajectories with respect to the contextual information from the actor’s
environment. In particular, we assume access to the same set of polygons Πij used in the off-road
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Table 1: Comparison of prediction errors at 3s horizon sliced by maneuver types
Overall Straight Turning

Model `2 CT AT OD `2 CT AT OD `2 CT AT OD
RasterNet 1.52 0.34 1.39 0.05 1.46 0.28 1.37 0.04 2.15 0.85 1.69 0.10
+ action upweight 1.52 0.34 1.39 0.05 1.47 0.29 1.37 0.04 2.06 0.82 1.64 0.11
+ off-road loss 1.58 0.37 1.44 0.04 1.52 0.32 1.41 0.03 2.13 0.84 1.68 0.08

Table 2: Comparison of prediction errors at 6s horizon sliced by maneuver types
Overall Straight Turning

Model `2 CT AT OD `2 CT AT OD `2 CT AT OD
RasterNet 4.79 0.90 4.42 0.14 4.54 0.61 4.37 0.11 7.50 3.12 5.64 0.39
+ action upweight 4.79 0.93 4.40 0.15 4.59 0.67 4.39 0.11 6.97 2.90 5.29 0.44
+ off-road loss 4.91 0.96 4.52 0.14 4.72 0.73 4.49 0.11 7.03 2.75 5.47 0.35

losses to represent the drivable region. Then, given a set of drivable road polygons and a predicted
trajectory, we define off-road distance (OD) for a given predicted position as

doffroadi(j+h) = min
p∈Πij

`2
(
(x̂i(j+h), ŷi(j+h)), p

)
, (11)

where `2 is a Euclidean distance between predicted trajectory point (x̂i(j+h), ŷi(j+h)) and polygon p.

In addition, we also use filters defined in Section 3.2 to slice the test data and provide detailed
per-category errors, in addition to aggregate errors as commonly reported. As we will see, such
evaluation provides important insights into the model accuracy on under-represented cases, painting
a much clearer picture of the overall performance.

4.3 Results

In this section we present performance results of the competing approaches, where we report `2,
AT, CT, and OD metrics, introduced in the previous section. To measure the performance of each
multimodal method, we considered only the highest confidence trajectory for each test example.

To evaluate impact of the data imbalance discussed in Section 3.2, as well as the effectiveness of our
proposed methods, we compared the following multimodal models:

• RasterNet: baseline model described in Section 3.1;
• action upweighting: an extension of RasterNet where left-, right-, and sharp-turn examples

found using filters introduced in 3.2 were upweighted by a factor of 2;
• off-road loss: a model employing action upweighting, along with both off-road losses

introduced in equations (8) and (9) (hyper-parameters were set to λ = 0.25 and β = 5).

The error metrics computed at the 3s and 6s-horizons are shown in Tables 1 and 2, respectively. We
report metrics aggregated over all test examples (Overall), as well as metrics computed only on two
maneuver types (Straight and Turning).

Let us first consider the RasterNet results, where we can see that the AT and CT errors differ
significantly. CT metric is lower, however it is important to emphasize that cross-track errors may
have a higher impact on the SDV’s on-street performance. The reason is that errors in the cross-track
direction may make autonomous vehicles very sensitive to incorrect predictions coming from vehicles
located in neighboring lanes, unlike errors in the along-track direction where the SDV performance is
usually much more robust. Having said this, it is interesting to consider results sliced by straight and
turning maneuvers. As discussed in Section 3.2, straight trajectories cover vast majority of the traffic
data, and the model metrics are expectedly better in these cases. However, the metrics are significantly
worse on turning trajectories, which are often the cases that we mostly care about as these are the
situations where good SDV performance is the most critical (e.g., behavior in interactions, interaction
with turning actors, or vehicles cutting off the SDV). Thus, improving performance in such cases is
of particular importance for the autonomous system.
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Figure 3: Qualitative examples comparing control (top) and off-road upweighting model (bottom),
where green trajectory represents ground truth and blue trajectories represent model predictions (with
mode probabilities given in text boxes); we can see that the model accounting for off-road errors
exhibits significantly improved performance in these under-represented cases

Next we discuss an impact of using action upweighting to improve the RasterNet model. We can
see that in aggregate the model has the same overall `2 error at both 3 and 6 seconds. Examining the
sliced metrics, the action-upweighted model improved over RasterNet in turning scenarios at both
horizons, but regressed slightly when it came to straight trajectories. This behavior was expected,
as the upweighting of turning scenarios forces the model to give less priority to straight examples
compared to RasterNet. Nevertheless, along the lines of our prior discussion, the improvement in the
under-represented cases often leads to improved overall on-street performance of the SDV.

Going forward, we can see that the off-road model underperformed when examining the displacement,
along-track, and cross-track errors at both 3s and 6s horizons. However, slicing by action category
shows that this performance regression primarily stems from straight trajectories. On turning
trajectories, the model improved over RasterNet in `2, AT, and CT errors at both 3s and 6s, and
has the best cross-track error of any method at 6s. We hypothesize that this improvement in final
cross-track error may be due to increased utilization of the map information and better understanding
of potential drivable regions for the predicted trajectories.

Considering the off-road error metric, the off-road-loss model matched or improved over RasterNet
and the action-upweight model across all horizons and slices. Improvements are most apparent on
turning trajectories, which saw a 20% improvement over RasterNet at 3s and a 10% improvement at 6s.
To further explore benefit of these improvements, we run qualitative analysis using several interesting
examples, given in Figure 3. In particular, we considered left- and right-turning actor, as well as an
actor approaching a roundabout. The first row shows output of the baseline RasterNet, with the output
of the off-road-loss model illustrated in the second row. While the baseline predicted suboptimal
trajectories that leave the actor’s drivable regions, we can see that the improved models tends to
follow lanes much better. In general, the trajectories do not cut corners, do not enter sidewalks, and
overall have better lane keeping behavior. It is particularly interesting to see this improvement in the
roundabout case, featuring very rare road geometry that is handled very well by the final model.

5 Conclusion
We discussed the common problem of imbalance in traffic data, shown to be inherent in a number of
publicly available data sets. We considered recently proposed state-of-the-art model RasterNet, and
through analysis of prediction metrics sliced by common vehicle maneuvers showed that the model
is affected by this issue. We experimented with the traditional bias mitigation techniques that help
improve the performance, and also proposed a novel off-road loss to gain further boosts in the model
performance, as well as novel off-road metric to complement commonly used trajectory prediction
metrics. Experiment on real-world data clearly show benefits of the proposed approaches.
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